National Repository of Grey Literature 9 records found  Search took 0.00 seconds. 
Methodology of highly reliable systems design
Straka, Martin ; Gramatová, Elena (referee) ; Racek, Stanislav (referee) ; Kotásek, Zdeněk (advisor)
In the thesis, a methodology alternative to existing methods of digital systems design with increased dependability implemented into FPGA is presented, new features which can be used in the implementation and testing of these systems are demonstrated. The research is based on the use of FPGA partial dynamic reconfiguration for the design of fault tolerant systems. In these applications, the partial dynamic reconfiguration can be used as a mechanism to correct the fault and recover the system after the fault occurrence. First, the general principles of diagnostics, testing and digital systems dependability are presented including a brief description of FPGA components and their architectures. Next, a survey of currently used methods and techniques used for the design and implementation of fault tolerant systems into FPGA is described, especially the methods used for fault detection and localization, their correction, together with the principles of evaluating fault tolerant systems design quality.  The most important part of the thesis is seen in the description of the design methodology, implementation and testing of fault tolerant systems implemented into FPGAs which uses SRAMs as the configuration memory. First, the methodology of developing and automated checker components design for digital systems and communication protocols is presented. Then, a reference architecture of a dependable system implemented into FPGA is demonstrated including several fault tolerant architectures based on the use of partial dynamic reconfiguration as the mechanism of fault correction and the recovery from it. The principles of controlling the reconfiguration process are described together with the description of the test platform which allows to test and verify the design of fault tolerant systems based on the methodology presented in the thesis. The experimental results and the contribution of the thesis are discussed in the conclusions.
Methodology for Fault Tolerant Systems Design into Limited Implementation Area in FPGA
Mičulka, Lukáš ; Racek, Stanislav (referee) ; Vlček, Karel (referee) ; Kotásek, Zdeněk (advisor)
Tato práce popisuje navrženou metodologii pro návrh systémů odolných proti poruchám v FPGA schopnou ochránit systém před projevy přechodných a trvalých poruch. Oprava přechodné poruchy je prováděna částečnou dynamickou rekonfigurací. Oprava omezeného počtu trvalých poruch je založena na použití odolných architektur využívajících menší množství zdrojů než předchozí použitá architektura. Vadná část FPGA tak není dále využívána. Tato technika je založena na použití předkompilovaných konfigurací uložených v externí paměti. Pro snížení paměťových nároků pro uložení konfiguračních bitových posloupností je použita technika relokace.
Methodology for fault tolerant system state synchronization design and its recovery from faults
Szurman, Karel ; Fišer, Petr (referee) ; Racek, Stanislav (referee) ; Vlček, Karel (referee) ; Kotásek, Zdeněk (advisor)
In this Ph.D. thesis, a new methodology for the fault tolerant system state synchronization design and its recovery from faults is presented. A state synchronization method designed by means of the proposed methodology allows to repair the state of sequential logic elements implemented in the FPGA application logic, which cannot be repaired by the partial dynamic reconfiguration. The proposed methodology describes possible state synchronization design methods with respect to TMR granularity, dependence of the system function on its previous states and the system architecture. The methodology focuses on coarse-grained TMR architectures and state synchronization in the systems controlled by means of finite state machines or a processor. The use of the methodology is demonstrated on the CAN bus control system and the microcontroller NEO430, for which specific synchronization methods were designed. The systems reliability and new ability of the systems for recovery from faults were verified in the presence of simulated SEU faults. The experimental results and the contribution of this thesis are discussed in the conclusion.
Partial reconfiguration methods based on programmable structures
Kolář, Jan ; Kváš, Marek (referee) ; Valach, Soběslav (advisor)
This master's thesis dissertates of partial reconfiguration methods based on programmable structures. In theoretical part it deals with difference and modular-based method of Xilinx's FPGAs Partial reconfiguration. Options of both reconfiguration techniques were written for Spartan 3, Virtex II, Virtex 4 and Virtex 5 processors. Diference-based method was in practical part tested on Spartan 3E Starter Kit and modular-based on ML501 board. All configuration bitstreams are included on CD. Xilinx Inc. provided all needed software tools such as ISE9.2i and PlanAHEAD.
Methodology for fault tolerant system state synchronization design and its recovery from faults
Szurman, Karel ; Fišer, Petr (referee) ; Racek, Stanislav (referee) ; Vlček, Karel (referee) ; Kotásek, Zdeněk (advisor)
In this Ph.D. thesis, a new methodology for the fault tolerant system state synchronization design and its recovery from faults is presented. A state synchronization method designed by means of the proposed methodology allows to repair the state of sequential logic elements implemented in the FPGA application logic, which cannot be repaired by the partial dynamic reconfiguration. The proposed methodology describes possible state synchronization design methods with respect to TMR granularity, dependence of the system function on its previous states and the system architecture. The methodology focuses on coarse-grained TMR architectures and state synchronization in the systems controlled by means of finite state machines or a processor. The use of the methodology is demonstrated on the CAN bus control system and the microcontroller NEO430, for which specific synchronization methods were designed. The systems reliability and new ability of the systems for recovery from faults were verified in the presence of simulated SEU faults. The experimental results and the contribution of this thesis are discussed in the conclusion.
Methodology for Fault Tolerant Systems Design into Limited Implementation Area in FPGA
Mičulka, Lukáš ; Racek, Stanislav (referee) ; Vlček, Karel (referee) ; Kotásek, Zdeněk (advisor)
Tato práce popisuje navrženou metodologii pro návrh systémů odolných proti poruchám v FPGA schopnou ochránit systém před projevy přechodných a trvalých poruch. Oprava přechodné poruchy je prováděna částečnou dynamickou rekonfigurací. Oprava omezeného počtu trvalých poruch je založena na použití odolných architektur využívajících menší množství zdrojů než předchozí použitá architektura. Vadná část FPGA tak není dále využívána. Tato technika je založena na použití předkompilovaných konfigurací uložených v externí paměti. Pro snížení paměťových nároků pro uložení konfiguračních bitových posloupností je použita technika relokace.
Methodology of highly reliable systems design
Straka, Martin ; Gramatová, Elena (referee) ; Racek, Stanislav (referee) ; Kotásek, Zdeněk (advisor)
In the thesis, a methodology alternative to existing methods of digital systems design with increased dependability implemented into FPGA is presented, new features which can be used in the implementation and testing of these systems are demonstrated. The research is based on the use of FPGA partial dynamic reconfiguration for the design of fault tolerant systems. In these applications, the partial dynamic reconfiguration can be used as a mechanism to correct the fault and recover the system after the fault occurrence. First, the general principles of diagnostics, testing and digital systems dependability are presented including a brief description of FPGA components and their architectures. Next, a survey of currently used methods and techniques used for the design and implementation of fault tolerant systems into FPGA is described, especially the methods used for fault detection and localization, their correction, together with the principles of evaluating fault tolerant systems design quality.  The most important part of the thesis is seen in the description of the design methodology, implementation and testing of fault tolerant systems implemented into FPGAs which uses SRAMs as the configuration memory. First, the methodology of developing and automated checker components design for digital systems and communication protocols is presented. Then, a reference architecture of a dependable system implemented into FPGA is demonstrated including several fault tolerant architectures based on the use of partial dynamic reconfiguration as the mechanism of fault correction and the recovery from it. The principles of controlling the reconfiguration process are described together with the description of the test platform which allows to test and verify the design of fault tolerant systems based on the methodology presented in the thesis. The experimental results and the contribution of the thesis are discussed in the conclusions.
Methodology of highly reliable systems design
Straka, Martin ; Kotásek, Zdeněk (advisor)
In the thesis, a methodology alternative to existing methods of digital systems design with increased dependability implemented into FPGA is presented, new features which can be used in the implementation and testing of these systems are demonstrated. The research is based on the use of FPGA partial dynamic reconfiguration for the design of fault tolerant systems. In these applications, the partial dynamic reconfiguration can be used as a mechanism to correct the fault and recover the system after the fault occurrence. First, the general principles of diagnostics, testing and digital systems dependability are presented including a brief description of FPGA components and their architectures. Next, a survey of currently used methods and techniques used for the design and implementation of fault tolerant systems into FPGA is described, especially the methods used for fault detection and localization, their correction, together with the principles of evaluating fault tolerant systems design quality.  The most important part of the thesis is seen in the description of the design methodology, implementation and testing of fault tolerant systems implemented into FPGAs which uses SRAMs as the configuration memory. First, the methodology of developing and automated checker components design for digital systems and communication protocols is presented. Then, a reference architecture of a dependable system implemented into FPGA is demonstrated including several fault tolerant architectures based on the use of partial dynamic reconfiguration as the mechanism of fault correction and the recovery from it. The principles of controlling the reconfiguration process are described together with the description of the test platform which allows to test and verify the design of fault tolerant systems based on the methodology presented in the thesis. The experimental results and the contribution of the thesis are discussed in the conclusions.
Partial reconfiguration methods based on programmable structures
Kolář, Jan ; Kváš, Marek (referee) ; Valach, Soběslav (advisor)
This master's thesis dissertates of partial reconfiguration methods based on programmable structures. In theoretical part it deals with difference and modular-based method of Xilinx's FPGAs Partial reconfiguration. Options of both reconfiguration techniques were written for Spartan 3, Virtex II, Virtex 4 and Virtex 5 processors. Diference-based method was in practical part tested on Spartan 3E Starter Kit and modular-based on ML501 board. All configuration bitstreams are included on CD. Xilinx Inc. provided all needed software tools such as ISE9.2i and PlanAHEAD.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.